Abstract

Background: Patients with chromosome 18 abnormalities can present with an immune phenotype that resembles common variable immunodeficiency. Knowledge of the genes underlying the immune defects related to chromosome 18 aberrations could improve our understanding of the molecular basis of primary antibody deficiencies. Here we present a patient with ring chromosome 18 affected by primary antibody deficiency and autoimmunity.
Methods: Lymphocyte populations were determined by flow cytometry. Specific antibody response to protein vaccines and pneumococcal capsule antigen were measured by ELISA. Genome sequencing was performed using a PCR-free protocol.
Case: The patient was diagnosed with ring chromosome 18 for delayed growth and dysmorphic features at the age of 1 month. Array comparative genomic hybridization showed deletions of 18p11.21-pter and 18q21.31-qter. At the age of 10 months, she started having recurrent episodes of otitis media and pneumonia, as well as autoimmune arthritis. Serum immunoglobulins and specific antibody levels were low. The CD19+CD27+ memory B cell and CD45RO+ T cell populations were decreased. Recurrent infections were controlled with parenteral immunoglobulin and autoimmune arthritis was treated with systemic and intra-articular therapies.
Conclusions: Selective IgA deficiency is the most common form of immunodeficiency associated with chromosome 18 abnormalities, however patients with ring chromosome 18 may also be affected by specific antibody deficiency and require immunoglobulin replacement for optimal care. These patients might partially share the same genomic loss as in patients with non-syndromic primary antibody deficiency.
Statement of novelty: This report highlights an important teaching point about immune deficiency in a chromosomal anomaly that is not infrequently encountered in pediatric hospitals. Furthermore, our investigations provide more insight into the pathogenesis of immunodeficiency among patients with chromosome 18 abnormalities.

Formats available

You can view the full content in the following formats:

REFERENCES

Aghamohammadi A., Mohammadi J., Parvaneh N., Rezaei N., Moin M., Espanol T., and Hammarstrom L. 2008. Progression of selective IgA deficiency to common variable immunodeficiency. Int. Arch. Allergy Immunol. 147(2):87–92.
Al Rushood M., McCusker C., Mazer B., Alizadehfar R., Grimbacher B., Depner M., and Ben-Shoshan M. 2013. Autosomal dominant cases of chronic mucocutaneous candidiasis segregates with mutations of signal transducer and activator of transcription 1, but not of Toll-like receptor 3. J. Pediatr. 163(1):277–279.
Angulo I., Vadas O., Garcon F., Banham-Hall E., Plagnol V., Leahy T.R., Baxendale H., Coulter T., Curtis J., Wu C., Blake-Palmer K., Perisic O., Smyth D., Maes M., Fiddler C., Juss J., Cilliers D., Markelj G., Chandra A., Farmer G., Kielkowska A., Clark J., Kracker S., Debre M., Picard C., Pellier I., Jabado N., Morris J.A., Barcenas-Morales G., Fischer A., Stephens L., Hawkins P., Barrett J.C., Abinun M., Clatworthy M., Durandy A., Doffinger R., Chilvers E.R., Cant A.J., Kumararatne D., Okkenhaug K., Williams R.L., Condliffe A., and Nejentsev S. 2013. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science. 342(866):866–871.
Benini R., Saint-Martin C., Shevell M.I., and Bernard G. 2012. Abnormal myelination in ring chromosome 18 syndrome. J. Child Neurol. 27(8):1042–1047.
Berland R. and Wortis H.H. 2003. Normal B-1a cell development requires B cell-intrinsic NFATc1 activity. Proc. Natl. Acad. Sci. USA. 100(23):13459–13464.
Bhattacharyya S., Deb J., Patra A.K., Pham D.A.T., Chen W., Vaeth M., Berberich-Siebelt F., Klein-Hessling S., Lamperti E.D., Reifenberg K., Jellusova J., Schweizer A., Nitschke L., Leich E., Rosenwald A., Brunner C., Engelmann S., Bommhardt U., Avots A., Muller M.R., Kondo E., and Serfling E. 2011. NFATc1 affects mouse splenic B cell function by controlling the calcineurin–NFAT signaling network. J. Exp. Med. 208(4):823–839.
Bourdeau A., Dube N., Heinonen K.M., Theberge J.F., Doody K.M., and Tremblay M.L. 2007. TC-PTP-deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-γ. Blood. 109(10):4220–4228.
Browning M.J. 2010. Specific polysaccharide antibody deficiency in chromosome 18p deletion syndrome and immunoglobulin A deficiency. J. Investig. Allergol. Clin. Immunol. 20(3):263–266.
Calvo Campoverde K., Gean E., Piquer Gibert M., Martinez Valdez L., Deya-Martinez A., Rojas Volquez M., Esteve-Sole A., Juan M., Plaza M.A., and Alsina L. 2016. Humoral deficiency in three paediatric patients with genetic diseases. Allergol. Immunopathol. 44(3):257–262.
Carter E., Heard P., Hasi M., Soileau B., Sebold C., Hale D.E., and Cody J.D. 2015. Ring 18 molecular assessment and clinical consequences. Am. J. Med. Genet., Part A. 167A(1):54–63.
Charbit-Henrion F., Jeverica A.K., Begue B., Markelj G., Parlato M., Avcin S.L., Callebaut I., Bras M., Parisot M., Jazbec J., Homan M., Ihan A., Rieux-Laucat F., Stolzenberg M.C., Ruemmele F.M., Avcin T., Cerf-Bensussan N., and GENIUS Group. 2017. Deficiency in mucosa-associated lymphoid tissue lymphoma translocation 1: A novel cause of IPEX-like syndrome. J. Pediatr. Gastroenterol. Nutr. 64(3):378–384.
Chen H.H., Handel N., Ngeow J., Muller J., Huhn M., Yang H.T., Heindl M., Berbers R.M., Hegazy A.N., Kionke J., Yehia L., Sack U., Blaser F., Rensing-Ehl A., Reifenberger J., Keith J., Travis S., Merkenschlager A., Kiess W., Wittekind C., Walker L., Ehl S., Aretz S., Dustin M.L., Eng C., Powrie F., and Uhlig H.H. 2016. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: Analysis of FOXP3 regulatory T cells. J. Allergy Clin. Immunol. 139(2):607–620.e15.
Cody J.D., Carter E.M., Sebold C., Heard P.L., and Hale D.E. 2009. A gene dosage map of Chromosome 18: A map with clinical utility. Genet. Med. 11(11):778–782.
Cody J.D., Hasi M., Soileau B., Heard P., Carter E., Sebold C., O’Donnell L., Perry B., Stratton R.F., and Hale D.E. 2014. Establishing a reference group for distal 18q-: Clinical description and molecular basis. Hum. Genet. 133(2):199–209.
Cody J.D., Sebold C., Heard P., Carter E., Soileau B., Hasi-Zogaj M., Hill A., Rupert D., Perry B., O’Donnell L., Gelfond J., Lancaster J., Fox P.T., and Hale D.E. 2015. Consequences of chromsome18q deletions. Am. J. Med. Genet., Part C: Semin. Med. Genet. 169(3):265–280.
Conley M.E. 2009. Genetics of hypogammaglobulinemia: What do we really know? Curr. Opin. Immunol. 21(5):466–471.
Cunningham-Rundles C. 2012. Human B cell defects in perspective. Immunol. Res. 54(1–3):227–232.
Dacou-Voutetakis C., Sertedaki A., Maniatis-Christidis M., Sarri C., Karadima G., Petersen M.B., Xaidara A., Kanariou M., and Nicolaidou P. 1999. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: Additional evidence of autoimmunity or IDDM gene(s) on chromosome 18. J. Med. Genet. 36(2):156–158.
Domeier P.P., Chodisetti S.B., Soni C., Schell S.L., Elias M.J., Wong E.B., Cooper T.K., Kitamura D., and Rahman Z.S. 2016. IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity. J. Exp. Med. 213(5):715–732.
Dostal A., Linnankivi T., Somer M., Kahkonen M., Litzman J., and Tienari P. 2007. Mapping susceptibility gene locus for IgA deficiency at del(18)(q22.3-q23); report of familial cryptic chromosome t(18q; 10p) translocations. Int. J. Immunogenet. 34(3):143–147.
Driessen G.J., IJspeert H., Wentink M., Yntema H.G., van Hagen P.M., van Strien A., Bucciol G., Cogulu O., Trip M., Nillesen W., Peeters E.A., Pico-Knijnenburg I., Barendregt B.H., Rizzi M., van Dongen J.J., Kutukculer N., and van der Burg M. 2016. Increased PI3K/Akt activity and deregulated humoral immune response in human PTEN deficiency. J. Allergy Clin. Immunol. 138(6):1744–1747.e5.
Faed M.J., Whyte R., Paterson C.R., McCathie M., and Robertson J. 1972. Deletion of the long arms of chromosome 18 (46,XX,18q-) associated with absence of IgA and hypothyroidism in an adult. J. Med. Genet. 9(1):102–105.
Feingold M. and Schwartz R.S. 1968. IgA and partial deletions of chromosome 18. Lancet. 292(7577):1086.
Fischer P., Golob E., Friedrich F., Kunze-Muhl E., Doleschel W., and Aichmair H. 1970. Autosomal deletion syndrome 46,XX,18p-: A new case report with absence of IgA in serum. J. Med. Genet. 7(1):91–98.
Guerrini M.M., Sobacchi C., Cassani B., Abinun M., Kilic S.S., Pangrazio A., Moratto D., Mazzolari E., Clayton-Smith J., Orchard P., Coxon F.P., Helfrich M.H., Crockett J.C., Mellis D., Vellodi A., Tezcan I., Notarangelo L.D., Rogers M.J., Vezzoni P., Villa A., and Frattini A. 2008. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am. J. Hum. Genet. 83(1):64–76.
Guilherme R.S., Meloni V.F., Kim C.A., Pellegrino R., Takeno S.S., Spinner N.B., Conlin L.K., Christofolini D.M., Kulikowski L.D., and Melaragno M.I. 2011. Mechanisms of ring chromosome formation, ring instability and clinical consequences. BMC Med. Genet. 12:171.
Hasi-Zogaj M., Sebold C., Heard P., Carter E., Soileau B., Hill A., Rupert D., Perry B., Atkinson S., O’Donnell L., Gelfond J., Lancaster J., Fox P.T., Hale D.E., and Cody J.D. 2015. A review of 18p deletions. Am. J. Med. Genet., Part C: Semin. Med. Genet. 169(3):251–264.
Hogendorf A., Lipska-Zietkiewicz B.S., Szadkowska A., Borowiec M., Koczkowska M., Trzonkowski P., Drozdz I., Wyka K., Limon J., and Mlynarski W. 2016. Chromosome 18q deletion syndrome with autoimmune diabetes mellitus: Putative genomic loci for autoimmunity and immunodeficiency. Pediatr. Diabetes. 17(2):153–159.
Imataka G., Ohwada Y., Shimura N., Yoshihara S., and Arisaka O. 2015. Del(18)(q12.2q21.1) syndrome: A case report and clinical review of the literature. Eur. Rev. Med. Pharmacol. Sci. 19(17):3241–3245.
Kato Z., Morimoto W., Kimura T., Matsushima A., and Kondo N. 2010. Interstitial deletion of 18q: Comparative genomic hybridization array analysis of 46, XX,del(18)(q21.2.q21.33). Birth Defects Res., Part A: Clin. Mol. Teratol. 88(2):132–135.
Lejtenyi D. and Mazer B. 2008. Consistency of protective antibody levels across lots of intravenous immunoglobulin preparations. J. Allergy Clin. Immunol. 121(1):254–255.
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., Tukiainen T., Birnbaum D.P., Kosmicki J.A., Duncan L.E., Estrada K., Zhao F., Zou J., Pierce-Hoffman E., Berghout J., Cooper D.N., Deflaux N., DePristo M., Do R., Flannick J., Fromer M., Gauthier L., Goldstein J., Gupta N., Howrigan D., Kiezun A., Kurki M.I., Moonshine A.L., Natarajan P., Orozco L., Peloso G.M., Poplin R., Rivas M.A., Ruano-Rubio V., Rose S.A., Ruderfer D.M., Shakir K., Stenson P.D., Stevens C., Thomas B.P., Tiao G., Tusie-Luna M.T., Weisburd B., Won H.H., Yu D., Altshuler D.M., Ardissino D., Boehnke M., Danesh J., Donnelly S., Elosua R., Florez J.C., Gabriel S.B., Getz G., Glatt S.J., Hultman C.M., Kathiresan S., Laakso M., McCarroll S., McCarthy M.I., McGovern D., McPherson R., Neale B.M., Palotie A., Purcell S.M., Saleheen D., Scharf J.M., Sklar P., Sullivan P.F., Tuomilehto J., Tsuang M.T., Watkins H.C., Wilson J.G., Daly M.J., MacArthur D.G., and Exome Aggregation Consortium. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536(7616):285–291.
Li X., Ho S.N., Luna J., Giacalone J., Thomas D.J., Timmerman L.A., Crabtree G.R., and Francke U. 1995. Cloning and chromosomal localization of the human and murine genes for the T-cell transcription factors NFATc and NFATp. Cytogenet. Cell Genet. 68(3–4):185–191.
Lu X., Chen J., Sasmono R.T., Hsi E.D., Sarosiek K.A., Tiganis T., and Lossos I.S. 2007. T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol. Cell. Biol. 27(6):2166–2179.
Martini H., Enright V., Perro M., Workman S., Birmelin J., Giorda E., Quinti I., Lougaris V., Baronio M., Warnatz K., and Grimbacher B. 2011. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model. Clin. Exp. Immunol. 164(3):381–387.
McKinnon M.L., Rozmus J., Fung S.Y., Hirschfeld A.F., Del Bel K.L., Thomas L., Marr N., Martin S.D., Marwaha A.K., Priatel J.J., Tan R., Senger C., Tsang A., Prendiville J., Junker A.K., Seear M., Schultz K.R., Sly L.M., Holt R.A., Patel M.S., Friedman J.M., and Turvey S.E. 2014. Combined immunodeficiency associated with homozygous MALT1 mutations. J. Allergy Clin. Immunol. 133(5):1458–1462.e7.
Medyouf H. and Ghysdael J. 2008. The calcineurin/NFAT signaling pathway: A novel therapeutic target in leukemia and solid tumors. Cell Cycle. 7(3):297–303.
Michaels D.L., Go S., Humbert J.R., Dubois R.S., Stewart J.M., and Ellis E.F. 1971. Intestinal nodular lymphoid hyperplasia, hypogammaglobulinemia, and hematologic abnormalities in a child with a ring 18 chromosome. J. Pediatr. 79(1):80–88.
Monlong J., Girard S.L., Meloche C., Cadieux-Dion M., Andrade D.M., Lafreniere R.G., Gravel M., Spiegelman D., Dionne-Laporte A., Boelman C., Hamdan F.F., Michaud J.L., Rouleau G., Minassian B.A., Bourque G., and Cossette P. 2018. Global characterization of copy number variants in epilepsy patients from whole genome sequencing. PLoS Genet. 14(4):e1007285.
Narula S., LaRosa D.F., Kamoun M., Dalmau J., and Levinson A.I. 2007. Progressive multifocal leukoencephalopathy in a patient with common variable immunodeficiency and abnormal CD8+ T-cell subset distribution. Ann. Allergy Asthma Immunol. 98(5):483–489.
Schatorje E., van der Flier M., Seppanen M., Browning M., Morsheimer M., Henriet S., Neves J.F., Vinh D.C., Alsina L., Grumach A., Soler-Palacin P., Boyce T., Celmeli F., Goudouris E., Hayman G., Herriot R., Forster-Waldl E., Seidel M., Simons A., and de Vries E. 2016. Primary immunodeficiency associated with chromosomal aberration—An ESID survey. Orphanet J. Rare Dis. 11(1):110.
Schinzel A., Schmid W., Luscher U., Nater M., Brook C., and Steinmann B. 1974. Structural aberrations of chromosome 18. I. The 18p-syndrome. Arch. Genet. 47(1):1–15.
Simoncic P.D., Lee-Loy A., Barber D.L., Tremblay M.L., and McGlade C.J. 2002. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr. Biol. 12(6):446–453.
Slyper A.H. and Pietryga D. 1997. Conversion of selective IgA deficiency to common variable immunodeficiency in an adolescent female with 18q deletion syndrome. Eur. J. Pediatr. 156(2):155–156.
Suzuki A., Kaisho T., Ohishi M., Tsukio-Yamaguchi M., Tsubata T., Koni P.A., Sasaki T., Mak T.W., and Nakano T. 2003. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J. Exp. Med. 197(5):657–667.
ten Hoeve J., de Jesus Ibarra-Sanchez M., Fu Y., Zhu W., Tremblay M., David M., and Shuai K. 2002. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22(16):5662–5668.
Toubiana J., Okada S., Hiller J., Oleastro M., Gomez M.L., Becerra J.C.A., Ouachee-Chardin M., Fouyssac F., Girisha K.M., Etzioni A., Van Montfrans J., Camcioglu Y., Kerns L.A., Belohradsky B., Blanche S., Bousfiha A., Rodriguez-Gallego C., Meyts I., Kisand K., Reichenbach J., Renner E.D., Rosenzweig S., Grimbacher B., van de Veerdonk F.L., Traidl-Hoffmann C., Picard C., Marodi L., Morio T., Kobayashi M., Lilic D., Milner J.D., Holland S., Casanova J.L., Puel A., and on behalf of the International STAT1 Gain-of-Function Study Group. 2016. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 127(25):3154–3164.
van de Ven A.A. and Warnatz K. 2015. The autoimmune conundrum in common variable immunodeficiency disorders. Curr. Opin. Allergy Clin. Immunol. 15(6):514–524.
Vorechovsky I., Blennow E., Nordenskjold M., Webster A.D., and Hammarstrom L. 1999. A putative susceptibility locus on chromosome 18 is not a major contributor to human selective IgA deficiency: Evidence from meiotic mapping of 83 multiple-case families. J. Immunol. 163(4):2236–2242.
You-Ten K.E., Muise E.S., Itie A., Michaliszyn E., Wagner J., Jothy S., Lapp W.S., and Tremblay M.L. 1997. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J. Exp. Med. 186(5):683–693.

Information & Authors

Information

Published In

cover image LymphoSign Journal
LymphoSign Journal
Volume 7Number 1March 2020
Pages: 25 - 36

History

Received: 17 August 2019
Accepted: 12 November 2019
Accepted manuscript online: 20 December 2019

Authors

Affiliations

Mehdi Yeganeh
Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, and the Research Institute of the McGill University Health Center, Montréal, QC
Tallal Basha
Division of Allergy and Immunology and Dermatology, Department of Pediatrics, Montreal Children’s Hospital, and the Research Institute of the McGill University Health Center, Montréal, QC
King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
Lina Sobhi Abdrabo
Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, and the Research Institute of the McGill University Health Center, Montréal, QC
Sophie Ran Wang
Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, and the Research Institute of the McGill University Health Center, Montréal, QC
Joël Lafond-Lapalme
Bioinformatics Platform, Research Institute of the McGill University Health Centre, Montréal, QC
Jean-Baptiste Rivière
Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, and the Research Institute of the McGill University Health Center, Montréal, QC
Duncan Lejtenyi
Division of Allergy and Immunology and Dermatology, Department of Pediatrics, Montreal Children’s Hospital, and the Research Institute of the McGill University Health Center, Montréal, QC
David S. Rosenblatt
Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, and the Research Institute of the McGill University Health Center, Montréal, QC
Christine McCusker
Division of Allergy and Immunology and Dermatology, Department of Pediatrics, Montreal Children’s Hospital, and the Research Institute of the McGill University Health Center, Montréal, QC
Reza Alizadehfar
Division of Allergy and Immunology and Dermatology, Department of Pediatrics, Montreal Children’s Hospital, and the Research Institute of the McGill University Health Center, Montréal, QC
Bruce D. Mazer [email protected]
Division of Allergy and Immunology and Dermatology, Department of Pediatrics, Montreal Children’s Hospital, and the Research Institute of the McGill University Health Center, Montréal, QC

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to LymphoSign Journal

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media