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Primary antibody deficiency associated with ring
chromosome 18
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Christine McCuskerb, Reza Alizadehfarb, and Bruce D. Mazerb*

ABSTRACT
Background: Patients with chromosome 18 abnormalities can present with an immune phenotype that
resembles common variable immunodeficiency. Knowledge of the genes underlying the immune defects related
to chromosome 18 aberrations could improve our understanding of the molecular basis of primary
antibody deficiencies. Here we present a patient with ring chromosome 18 affected by primary antibody
deficiency and autoimmunity.

Methods: Lymphocyte populations were determined by flow cytometry. Specific antibody response to protein
vaccines and pneumococcal capsule antigen were measured by ELISA. Genome sequencing was performed
using a PCR-free protocol.

Case: The patient was diagnosed with ring chromosome 18 for delayed growth and dysmorphic features at the age of
1 month. Array comparative genomic hybridization showed deletions of 18p11.21-pter and 18q21.31-qter. At the age
of 10 months, she started having recurrent episodes of otitis media and pneumonia, as well as autoimmune arthritis.
Serum immunoglobulins and specific antibody levels were low. The CD19+CD27+ memory B cell and CD45RO+ T
cell populations were decreased. Recurrent infections were controlled with parenteral immunoglobulin and
autoimmune arthritis was treated with systemic and intra-articular therapies.

Conclusions: Selective IgA deficiency is the most common form of immunodeficiency associated with
chromosome 18 abnormalities, however patients with ring chromosome 18 may also be affected by specific
antibody deficiency and require immunoglobulin replacement for optimal care. These patients might partially
share the same genomic loss as in patients with non-syndromic primary antibody deficiency.

Statement of novelty: This report highlights an important teaching point about immune deficiency in a chromo-
somal anomaly that is not infrequently encountered in pediatric hospitals. Furthermore, our investigations provide
more insight into the pathogenesis of immunodeficiency among patients with chromosome 18 abnormalities.

Introduction

Antibody deficiencies comprise the most common
form of inborn errors of the immune system. Although

some monogenic primary antibody deficiencies have
been identified, the genetic basis is not yet clear for
the majority of those patients (Conley 2009). This
reflects the heterogeneous nature of immune system
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development and maturation. In addition to single gene
defects, chromosomal structural abnormalities have
been associated with primary antibody deficiencies
(Cunningham-Rundles 2012; Schatorje et al. 2016).
These include both autosomal and sex chromo-
some aneuploidies, duplication, deletions and ring
chromosomes. Notably, defective humoral immunity
has been described among the clinical findings of
patients with different chromosome 18 abnormalities
(Feingold and Schwartz 1968; Fischer et al. 1970;
Michaels et al. 1971; Faed et al. 1972; Schinzel et al.
1974). Patients with deletions on both 18p and 18q
have presented with selective IgA deficiency (SIgAD),
hypogammaglobulinemia, impaired specific antibody
responses, and loss of memory B cells (Browning
2010; Cody et al. 2014; Hasi-Zogaj et al. 2015; Calvo
Campoverde et al. 2016). Additionally, deletions of
chromosome 18 are often marked with severe forms of
autoimmunity (Dacou-Voutetakis et al. 1999; Hasi-
Zogaj et al. 2015). The combination of antibody defi-
ciency and autoimmunity is a common feature of many
patients with common variable immunodeficiency
(CVID). Therefore, exploring the immunogenetics of
patients with chromosome 18 abnormalities might help
finding new insights into the yet-obscure genetics of pri-
mary antibody deficiencies in non-syndromic patients.

Ring chromosome 18 is characterized by dysmorphic
features such as microcephaly, hypertelorism, epican-
thal folds, micrognathia, and short tapering fingers.
Additionally, the patients are affected by severe intellec-
tual delay, hypotonia, seizures, white matter abnormal-
ities, hearing loss, and growth hormone deficiency
(Carter et al. 2015). Here, we report a case of ring
chromosome 18 who presented with recurrent bacterial
infections, low serum IgG and IgM levels, defective
specific antibody responses, and severe autoimmunity.
To further investigate this patient, we detected the
breakpoints by array comparative genomic hybridiza-
tion (aCGH) and performed genome sequencing (GS)
to examine possible gene defects that could lead to the
immune phenotype.

Materials and methods

Patient
The study was approved by the Research Ethics

Boards (REBs) of the McGill University Health Center
under the Canadian Primary Immunodeficiency
Evaluation Study (CPRIMES). Written consent was

obtained for the genetic and immunological investiga-
tions from the patient’s parents.

Flow cytometry
Lymphocyte immunophenotyping was perform

by standard flow cytometry using antibodies, all
from BD Bioscience: CD45RA/CD45RO/CD3/CD4
(cat #340571) and CD45RA/CD45RO/CD3/CD4
(cat #340574), PerCp-Cy5.5 conjugated CD19 (cat
#340951), FITC conjugated IgD (cat #555778), PE con-
jugated IgM (cat #55579), APC conjugated CD27 (cat
#337169).

Specific antibody response
Serum levels of anti-pneumococcal capsular antigen

IgG for 14 pneumococcal serotypes (1, 3, 4, 6B, 7F, 9V,
11A, 12F, 14, 15B, 18C, 19F, 23F, and 33F), were deter-
mined by ELISA as previously described (Lejtenyi and
Mazer 2008). Intravenous immunoglobulin (IVIG)
treatment was held for 6 months prior to immunization
of the patient with a 23-multivalent pneumococcal
polysaccharide vaccine. Post pneumococcal antibodies
levels were measured 4 weeks after immunization.

Array comparative genomic hybridization
(aCGH)
Genomic copy number variants were detected in a

local diagnostic laboratory, by NimbleGen CGX-12
microarray, containing 135K oligos (Signature
Genomic Laboratories, Spokane, WA, USA).

DNA extraction, whole genome sequencing
and data analysis
DNA was isolated from peripheral blood monocytes

using a commercially available kit (Qiagen, Toronto, ON,
Canada) according the manufacturer’s instructions. GS
was performed on 1 μg of genomic DNA using a PCR-free
protocol on an Illumina HiSeq X10 platform with 151-bp
paired-end reads and a sequencing depth of >30X at the
McGill University and Genome Quebec Innovation
Center. Data analysis followed the Genome Analysis
toolkit (GATK) best practices guidelines (https://
software.broadinstitute.org/gatk/best-practices/). Copy
number variants were detected using PopSV (Monlong
et al. 2018).

Case summary
Our patient—who is currently 20 years old—was born

at 36 weeks of gestation by breech vaginal delivery to
non-consanguineous French-Canadian parents, after an
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uncomplicated pregnancy. The Apgar score was 6 and 7
at 1 and 5 minutes of life, respectively. Growth parame-
ters at birth were weight 2530 g, length 48 cm and head
circumference 31.5 cm, all over 50th percentile for gesta-
tional age. She was treated with oxygen and antibiotics
for meconium aspiration. She is the youngest of 3 and
her older siblings are healthy. She was later re-admitted
at the age of 1 month for failure to thrive and was found
to have growth hormone deficiency. At that time, she
had developed dysmorphic features including borderline
low set ears, slightly protruding eyes, narrow palpebral
fissures, prominent maxilla with Cupid’s bow upper lip
and mild micrognathia. She also had a protuberant abdo-
men, an umbilical hernia, and a sacral dimple. A brain
MRI revealed delayed cerebral myelination that has been
previously reported (Benini et al. 2012). A karyotype
revealed ring chromosome 18. All metaphases exhibited
1 ring chromosome 18, and a small percentage of the
cells had 2 ring 18 chromosomes. Results of aCGH
showed a de novo interstitial deletion of 13q12.12 (23
544 669–24 109 193; UCSC 2009, GRCh37/hg19
Assembly), and deletions of 18p11.32p11.21 (141 491–14
117 537) and 18q21.31q23 (54 241 048–78 013 710;
UCSC 2009, GRCh37/hg19 Assembly) (Figure 1).

At age of 10 months, she developed recurrent otitis
media requiring bilateral pressure equalizing tube place-
ment. The patient developed multiple bacterial infec-
tions including 2 S. pneumoniae pneumonia episodes
with sepsis at age 15 and 21 months, cellulitis at age 16
months and a surgical granuloma with S. aureus super-
infection at 17 months of age.

She developed hypothyroidism, anterior uveitis, and
polyarthritis by the age of 2 years. She was seronegative
for autoimmunity and the complement levels were
normal. Her polyarthritis was controlled by systemic
and intra-articular corticosteroids, Methotrexate and
ultimately, Etanercept. Furthermore, she had frequent
episodes of hemoptysis, secondary to complete atresia
of the right upper pulmonary vein and a nearly atretic
right lower pulmonary vein, which were surgically
repaired. Her clinical features are summarized in Table 1.

Given the recurrent infections, her immune function
was assessed at age 15 months. IgG and IgM serum levels
were below the normal limits for age (1.1–3.92 μg/mL
and 0.12–0.85 μg/mL, respectively). She was started on
monthly infusions of IVIG (600 mg/kg) at the age of
21 months and there were no further episodes of sepsis
(Figure 2). Furthermore, concurrent with starting IVIG

Figure 1: Schematic representation of the deleted regions on
chromosome 18.

Table 1: Major clinical findings in this patient with ring
chromosome 18.

Findings Findings

Autism spectrum
disorder

Pulmonary fibrosis and
bronchiectasis

Intellectual disability Nocturnal enuresis
Behavioral issues Polyarthritis
Hypothyroidism Low IgG and IgM
Growth hormone
deficiency

Defective specific antibody
responses

Delayed puberty Decreased memory T and B cells
Premature ovarian
failure

Ptosis, cataracts and anterior
uveitis

Bilateral hearing loss Pulmonary vein atresia
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Figure 2: Serum immunoglobulin levels prior to and after
IVIG administration at 21 mo of age.
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although, her height remained below the 5th percentile
curve, after starting IVIG, she showed steady weight gain
(Figure 3). She also received exogenous growth hormone
(GH) as it had previously been shown to be beneficial in
children with ring chromosome 18 and growth delay
(Cody et al. 2015). A second assessment at the age of
11 years showed normal endogenous GH activity and
GH was discontinued.

In the scenario of recurrent episodes of pneumococ-
cal infection, antibody titers to diphtheria and tetanus
were obtained and were initially borderline-lower-end

normal at the age of 4 months (0.3 and 0.1 IU/mL,
respectively), but 6 months after a booster vaccine the
serum levels were protective (2.0 IU/mL). At the age of
9 years, antibody concentrations dropped to suboptimal
levels for diphtheria, tetanus, H. influenza, Mumps,
Varicella zoster virus (VZV), and Rubella. Never-
theless, booster doses for diphtheria and tetanus
induced again appreciable concentrations of specific
antibodies (Table 2). To determine if she should remain
on IVIG, we assessed specific antibody response to
the 23-multivalent pneumococcal polysaccharide
vaccine. Unfortunately, due to her age, pre and post

Figure 3: Improvement of weight gain after starting IVIG at 21 mo of age (arrow).
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pneumococcal antibodies levels were not available prior
to initiation of therapy, and stored sera were not avail-
able. At the age of 9 years, IVIG was held for 6 months
prior to vaccination and we measured her response
4 weeks following 23-multivalent pneumococcal
polysaccharide vaccine. Her poor response confirmed
the clinical suspicion of SIgAD (Table 3). During
the time off IVIG therapy, she developed episodes
of sinusitis, streptococcal vulvitis, and fungal onycholy-
sis. She was restarted on immunoglobulin therapy
(subcutaneous) and was also given prophylactic
azithromycin.

At age 13 and 18 years of age, immunophenotyping
of T and B-lymphocytes revealed normal total CD4
and CD8 T cells and CD19+ B cells. However, the
CD19+CD27+ memory B cell and CD19+CD27+IgD−
switched memory B cell populations were decreased,
compared to a health age-matched controls (Table 4).
Additionally, analysis of CD45RA and RO subtypes

revealed that both CD4+CD45RO+ and CD8+
CD45RO+ populations were significantly decreased
(Table 4) with few single positive CD45RO+ cells and
approximately 5% of T cells co-expressed CD45RA
and RO (Figure 4). Nevertheless, T cell function tests
including phytohemagglutinin-induced proliferation
and V-beta repertoire were normal (data not shown).

To investigate possible gene variants on the non-
affected sister chromosome, we performed GS. This
approach was chosen to find putative variants affecting
coding or intronic sequences, splice sites, and regulatory
regions. The results confirmed the breakpoints at
chr18:5001–15 190 000 and chr18:54 215 001–78 020
000 (UCSC 2009, GRCh37/hg19 Assembly). No patho-
genic or likely pathogenic variant of the genes in the
deleted regions of chromosome 18 was filtered out.
Meanwhile, we questioned whether a smaller intragenic
copy number variant (CNV) on the regions corre-
sponding to deletions had been missed on aCGH.
Indeed, we did not observe any other CNV in the 2
regions of interest using PopSV. We, however, used
the intermediate results of PopSV and looked at
bins with z score ≤−3. Using this method, we found
a deletion of 4 kb (chr18:60,575,00160,579,000) deep
in the middle of intron 8 of PHLPP1 with almost

Table 2: Serum specific antibody titers against protein vaccines.

Age 4 mo old 10 mo old (+ booster) 9 y old 9 y and 6 mo old (+ booster)

Diphtheria 0.3 IU/mL 2.0 IU/mL 0.01 IU/mL 4.8 IU/mL
Tetanus 0.1 IU/mL 2.0 IU/mL 0.07 IU/mL 1.6 IU/mL
H. influenzae 6 IU/mL — 0.5 IU/mL —

Mumps — — — Negative
VZV — — — Negative
Rubella — — — Negative

Table 3: Pre- and post-vaccination anti-pneumococcal
antibody titers.

Serotype
Pre-vaccination

(μg/mL)
Post-vaccination

(μg/mL)

1 0.11 <0.11
3 0.18 0.17
4 <0.08 0.10
6B 0.21 0.18
7F 0.56 0.49
9V 0.24 0.22
11A 0.31 0.19
12F 0.04 0.09
14 1.01 0.61
15B 0.62 0.5
18C 0.18 0.11
19F 0.52 0.40
23F 0.25 0.16
33F 0.52 0.43

Note: IVIG treatment was held for 6 mo before the patient was vaccinated
with a 23-multivalent pneumococcal polysaccharide vaccine. Serum
antibody titers for 14 serotypes were assessed 4 wk post-immunization.

Table 4: Enumeration of CD4+CD45RA/RO+,
CD8+CD45RA/RO+ and B cell subpopulations as a
percentage of total CD4, CD8 and CD19 counts.

Lymphocyte
phenotype Patient (%)

Reference
(mean±SD) %

CD19+sIgM+ 68 (% CD19) 50 (34± 66)
CD19+CD5+ 17 (% CD19) 39 (24± 54)
CD19+CD27+ 4 (% CD19) 23 (11± 23)
CD19+CD27+IgD− 1 (% CD19) >4
CD4+CD45RA+ 57 (% CD4) 53 (33± 66)
CD4+CD45RO+ 6 (% CD4) 28 (18± 38)
CD8+CD45RA+ 42.5 (% CD8) 79 (61± 91)
CD8+CD45RO+ 1 (% CD8) 23 (11± 23)
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2.5–3 kb distance from 5′ and 3′ splicing sites. GS fur-
ther excluded known monogenic defects associated with
primary antibody deficiencies.

Discussion

The phenotype of individuals with a given ring
chromosome can simply resemble those with terminal
deletions, but without ring formation. Nevertheless,
given the secondary genomic instability, clinical presen-
tations can be highly variable (Guilherme et al. 2011).
Chromosome 18 was among the first chromosomes
found in humans to be affected by ring formation
(Carter et al. 2015). Although deletions of 2 regions on
18q (17 000 000–19 667 062 and 45 578 734–46 739
965) are reportedly fatal, large deletions of chromosome
18 are thought to be less lethal due to the low gene
density per Mb (Cody et al. 2015). Deletions of 18q
are thought to have a more variable and unpredictable
phenotype compared to 18p deletions. This is likely
due to the high variability of hemizygosities as well as
other factors such as duplications, somatic mosaicism

and ring instability (Cody et al. 2009; Carter et al.
2015; Hasi-Zogaj et al. 2015). Our patient also has a
500 kb hemizygous deletion on chromosome 13 that
does not encompass any UCSC genes.

13% of patients with 18p- have low serum immuno-
globulin levels. SIgAD is the most common immune
defect in any type of chromosome 18 abnormality
(Cody et al. 2015; Hasi-Zogaj et al. 2015). Distal hemi-
zygosity of 18q22.3-q23 has been also shown to be
associated with SIgAD (Dostal et al. 2007). However,
normal serum IgA levels in our patient could be due
the variable penetrance of this locus that has been esti-
mated to be between 33% and 50% (Cody et al. 2015).
Additionally, the fact that SIgAD also affects patients
with 18p-, suggests that more than 1 single locus on
chromosome 18 regulates IgA. Indeed, there is evidence
that there is a common genetic basis for SIgAD and
CVID as the occurrence of both diseases in the same
family or progression of SIgAD to CVID has been
observed (Aghamohammadi et al. 2008). The conver-
sion of SIgAD to CVID has also been previously
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Figure 4: Loss of CD45RO+ memory T cell subpopulations in our patient with ring
chromosome 18. Peripheral blood mononuclear cells from the patient and healthy
control were stained and analyzed as described.
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reported in a female patient with 18q-syndrome (Slyper
and Pietryga 1997). Linkage analysis has failed to show
any loci on chromosome 18 associated with SIgAD
(Vorechovsky et al. 1999). Nonetheless, given the tech-
nical limitations at the time of those earlier studies, a
re-assessment of patients using recently developed tech-
nologies such as arrays or next generation sequencing
might help to discover novels gene defects or genomic
variations implicated in SIgAD or CVID.

In our patient, both IgM and IgG serum levels were
low and treatment with immunoglobulin was associated
with reduction in the frequency of infections, elimina-
tion of septic episodes, and improved weight gain. She
failed to develop a protective response to unconjugated
pneumococcal capsule antigens despite adequate post-
vaccine responses to tetanus and diphtheria, suggesting
the diagnosis of specific antibody deficiency. The
lack of specific polysaccharide antibodies has been pre-
viously reported in a patient with 18p- who only
responded once immunized with a conjugated vaccine
(Browning 2010). Meanwhile, a recent report of a
patient with ring chromosome 18 depicted a different
vaccine response: while all immunoglobulin isotypes,
including IgA, were low, he had a good responses to
unconjugated pneumococcal vaccination and booster
doses of diphtheria and tetanus vaccines (Calvo
Campoverde et al. 2016). Therefore, it is likely that,
at least for protein vaccines, a booster dose can augment
the specific antibody response in patients with chromo-
some 18 abnormalities and the use of conjugate
vaccines should be prioritized.

Impaired homeostasis of memory T and B cells has
been documented in CVID patients with autoimmunity
(van de Ven and Warnatz 2015). We observed
decreased CD19+CD27+ switched memory B cells and
CD45RO+ memory T cell populations, as has been
shown in 1 other patient with ring chromosome 18
(Calvo Campoverde et al. 2016). CVID patients with
reduced number of CD45RO+ T cells might be affected
with severe viral infections (Narula et al. 2007).

Association of primary antibody deficiencies and auto-
immunity has been well characterized (van de Ven and
Warnatz 2015). In addition to humoral immuno-
deficiency, patients with chromosome 18 abnormalities
have been affected with rheumatoid arthritis, lupus, thy-
roiditis, vitiligo and type I diabetes mellitus (Dacou-
Voutetakis et al. 1999; Hasi-Zogaj et al. 2015). In a

patient with a terminal deletion of 18q (18q21.32-q23)
and low serum IgA and IgG4 levels, autoimmune
thyroiditis and type 1 diabetes mellitus, regulatory T cell
(Treg) counts were low (Hogendorf et al. 2016). Our
patient has severe polyarthritis, uveitis, and hypothyroid-
ism. Unfortunately, we do not have data on Tregs in our
patient.

The lack of efficient B cell and T cell interplay has
been proposed to affect the development of memory
T cells (Martini et al. 2011). Our understanding of
the genetics of B cell deficiencies over the past decade
has largely advanced. None of those genes is located
on chromosome 18. In fact, patients with proximal
interstitial deletions of 18q do not show any abnormal
immune phenotype (Kato et al. 2010; Imataka et al.
2015). Therefore, it is probable that the candidate
genes for antibody defects on 18q are located distally.
In fact, homozygous pathogenic variants of Mucosa-
Associated Lymphoid Tissue Lymphoma Trans-
location 1 gene (MALT1), that resides on 18q21.32,
has been reported in patients with both CVID pheno-
types with reduced switched memory B cells and auto-
immunity with decreased Foxp3+ T cells (McKinnon
et al. 2014; Charbit-Henrion et al. 2017). To examine if
our patient’s immune dysregulation was due to a gene
variant on the regions of deletion, including MALT1,
and to exclude other known monogenic causes of
immunodeficiency and autoimmunity, we performed
WGS. However, we could not find any variant that
could explain the immunological phenotype, nor could
we find any pathogenic variant, including CNVs, of
MALT1. To our knowledge, MALT1 haploinsufficiency
has not been reported in humans as yet.

Indeed, few genes on chromosome 18 have been pre-
dicted to be haploinsufficient (Cody et al. 2009), among
which only TCF4 falls into the deleted region in our
patient. Heterozygous mutations of TCF4, however,
are associated with Pitt-Hopkins syndrome with no
well-established immunological presentation. We
ranked the genes on the deleted regions, using the prob-
ability of being loss-of-function (LoF) intolerant (pLI),
described by the Exome Aggregation Consortium
(ExAC; exac.broadinstitute.org) (Lek et al. 2016).
Genes with pLI ≥ 0.9 are considered as an extremely
LoF intolerant, meaning haploinsufficient.

We reviewed published studies in Pubmed.com and
further shortlisted genes of interest based on their
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possible involvement in immunological processes
(Table 5). Interestingly, both TCF4 and MALT1 ranked
on the top of the list (Table 5). This observation
suggests that the phenotypical consequence of genetic
variants of those genes might not have been recognized,
including possible digenic conditions.

We also examined other genes in the deleted region,
determined from the literature, that could contribute
to the lack of memory cells and SIgAD. PTPN2 is a neg-
ative regulator of Jak1 and Jak3 and deficient lympho-
cytes show increased STAT1 and STAT5 signaling
(Simoncic et al. 2002). Ptpn2−/− mice show impaired B
cell lymphopoiesis, as well as impaired T and B cell
response to mitogens. However, T cell development in
the thymus is not affected (You-Ten et al. 1997). On
the other hand, PTPN2 expression is enhanced in B cell
lymphomas (Lu et al. 2007). Importantly, it has been
shown that early maturation of B cells in the bone mar-
row of Ptnp2−/− mice was blocked due to enhanced
IFNγ-STAT1 signaling (Bourdeau et al. 2007). STAT1
activation is known to be upregulated in autoimmune
disorders (Domeier et al. 2016). Also, gain-of-function
(GOF) mutations of STAT1 have been shown in
patients with CVID and autoimmunity (Al Rushood
et al. 2013; Toubiana et al. 2016). Given the direct effect
of PTPN2 on STAT1 phosphorylation (ten Hoeve et al.
2002), loss of PTPN2 might contribute to a similar
phenotype as of STAT1 GOF mutations.

TNFRSF11A, also known as Receptor Activator of
Nuclear Factor Kappa-B (RANK), encodes the receptor
for RANK ligand (RANKL) that together make the
master signaling pathway for osteoclast differentiation.
Patients with Autosomal-Recessive Osteoporosis
(ARO) are affected by homozygous mutations of
RANK and RANKL. Additionally, these patients are

unable to produce antibodies in response to tetanus vac-
cination (Guerrini et al. 2008). Interestingly, patients
with homozygous mutations of TNFRSF11A (RANK),
but not TNFSF11 (RANKL) show decreased switched
memory B cells (IgD−CD27+), but did not show T cell
abnormalities (Guerrini et al. 2008).

PHLPP1 is a phosphatase that in parallel with PTEN
regulates the PI3K/AKT pathway (Chen et al. 2016).
Heterozygous mutations of PTEN cause Hamartoma
Tumor Syndromes (PHTS). Patients with PHTS have
defective antibody responses and autoimmune manifes-
tations (Driessen et al. 2016). While absolute numbers
of transitional peripheral B cells are elevated in these
patients, the CD27+ memory B cell population is
decreased. Moreover, class switch recombination and
somatic hypermutation are impaired in PHTS patients
(Driessen et al. 2016) as well as in PTEN deficient mice
(Suzuki et al. 2003). The effect of loss of PTEN on
B cells has been attributed to increased PI3K/AKT sig-
naling. In fact, in patients with dominant GOF muta-
tions of P110δ (a subunit of PI3K electively expressed
in lymphocytes) show impaired class switch recombina-
tion, defective antibody responses and increased transi-
tional B cells (Angulo et al. 2013). Notably, although
loss of PTEN in humans does not affect Treg develop-
ment, inhibitors of PHLPP1 block in vitro Treg differ-
entiation (Chen et al. 2016). Collectively, absence of
PHLPP1 in patients with 18q- could putatively replicate
the immunological phenotype of PTEN deficiency in
association with defective Treg responses. We found a
deep intronic 4 kb deletion in intron 8 of PHLPP1 in
our patient. However, this deletion is very unlikely to
be deleterious as it is quite far from flanking splice sites.
Further functional studies will be required to assess
whether haploinsufficiency of PHLPP1 is could lead to
this immunological phenotype.

NFATC1, encoding the nuclear factor of activated
T cell c1 (NFATc1), is a member of NFAT family
of transcriptional factors that are regulated via
Ca2+/Calcineurin (Medyouf and Ghysdael 2008). Based
on animal models, it has been suggested that NFATc1
deficiency might cause immunodeficiency in human
patients with 18q- (Li et al. 1995). Loss of Nfatc1 in
mice affects development and survival of both perito-
neal and splenic B1-a cells (Berland and Wortis 2003).
Moreover, even though NFATc1 does not affect
the development and maturation of B cells, it plays a
critical role in their function and fate. It has been shown

Table 5: List of the genes located on the deleted region
of chromosome 18 in our patient with pLI score of
≥0.90.

Chr Gene_start Gene_end Gene pLI

chr18 52889562 53332018 TCF4 0.999
chr18 12785477 12929642 PTPN2 0.995
chr18 56338618 56417371 MALT1 0.994
chr18 77155856 77289325 NFATC1 0.969
chr18 60382672 60647666 PHLPP1 0.918
chr18 55102917 55158529 ONECUT2 0.903
chr18 59992520 60058516 TNFRSF11A 0.879

Note: pLI, probability of being loss-of-function intolerant.
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that Nfact1−/− B cells in mice show impaired prolifera-
tion and survival in response to BCR stimulation,
Ig class switching and can suppress T cell activation
(Bhattacharyya et al. 2011). These findings were in asso-
ciation with impaired Ca2+ influx resembling defective
BCR signaling (Bhattacharyya et al. 2011). On the other
hand, loss of NFATc1 in T cells impaired homing of
follicular regulatory T cells in B cell follicles via transac-
tivation of CXCR5. This was associated with an exacer-
bated lupus-like phenotype in mice (Bhattacharyya
et al. 2011).

Conclusion

The association of hypogammaglobulinemia and
abnormal chromosome 18 was recognized over
50 years ago (Feingold and Schwartz 1968). However,
despite the advancement of our understanding of
the genetics of the immune system, the responsible
gene(s) for this phenotype are not yet known. In this
case, in addition to low serum immunoglobulin levels,
we found that both T and B memory cells and specific
polysaccharide antibody responses were defective
in our patient with ring chromosome 18. These data
suggest that although the underlying defective mecha-
nisms are not yet elucidated, it might be beneficial
to attempt booster doses of protein or conjugate vaccines
to patients with chromosome 18 abnormalities and
defective humoral immunity. Further investigations on
patients with chromosome 18 aberrations using new
technologies could help discover novel genes involved
in primary immunodeficiency and autoimmunity.
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